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Unidimensional Data from Multidimensional Tests

and Multidimensional Data from Unidimensional Tests

In the current literature on testing, the issue of the dimensionality of

the data obtained from educational and psychological tests has received

considerable attention (e.g., Goldstein & Wood, 1989; Hu lin, Drasgow &

Parsons, 1983; Linn, 1989). This interest has probably been stimulated by

the development of item response theory (IRT) since most IRT models

assume that the construct underlying test performance is unidimensional

(Hambleton, 1989). However, the terms "unidimensional" and

"multidimensional" have often not been used very precisely, resulting in

some confusion. The purpose of this paper is to make a proposal for how

these terms should be used and to provide some examples showing what

dimensionality really means when applied to dichotomous item response

data.

There are two frequent uses of the term dimensionality when the

term is used in reference to psychological and educational tests. First,

dimensionality is used to refer to the number of hypothesized psychological

constructs that are believed to be required for successful performance on a



Multidimensional Tests

2

test (Embretson, 1985). For example, numerical computation and verbal

reasoning are said to be required to successfully perform on a mathematics

story problem. Numerical computation and verbal reasoning are two

psychological dimensions that are hypothesized to exist to explain

differences in performance on the test item. In this paper, this use of

dimensionality will be referred to as "psychological dimensionality," or PD

for short. Second, dimensionality is used to refer to the minimum number

of mathematical variables that is needed to summarize a matrix of item

response data. For example, a vector composed of two elements may be

needed in a probabilistic model of test performance to reasonably

accurately predict how a person will respond to a particular set of test

items. In this paper, this use of the term will be referred to as "statistical

dimensionality," or SD for short.

The meaning of the constructs beilig used in these two cases may or

may not be the same. That is, differences in level on the mathematical

variables may not translate directly into differences on the psychological

4
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constructs. Whether or not they have the same meaning is a question of

the validity of the measures obtained using the particular mathematical

model of the interactions of persons and test items.

An issue related to the use of the term "dimensionality" is to what,

precisely, does the term refer? Does a psychological or educational test

have a particular.dimensionality? Or does the dimensionality reside in the

examinee population? Can the dimensionality of a test and an examinee

population be different? In psychological and educational testing, the data

typically analyzed is a matrix of zeros and ones that is generated by of the

interaction of a set of persons and a set of test items. It is that matrix of

observed data that is analyzed to determine the level of dimensionality,

specifically the SD. Therefore, the SD is a characteristic of the data

matrix, not the test or the examinee population. It cannot be said on the

basis of statistical analyses that a test is statistically unidimensional or

multidimensional, for if the test were administered to a different population

of examinees, a different SD might result. The observed SD is a function
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of the test and examinee population, but it is not necessarily descriptive of

a characteristic of either the test or the examinees.

Given this discussion of the use of the term dimensionality, the

purpose of this paper is to present a framework for discussing the SD of

dichotomous data matrices composed of item response data and to present

some theory to help interpret the meaning of such phrases as "these test

data can be adequately modeled with a unidimensional model" or "a

multidimensional model is needed to describe the interaction between the

examinee population and this set of test items."

Some Theory for Discussing

the Dimensionality of Test Data

Much of psychometric theory has been devoted to determining means

for converting the item response matrix of zeros and ones into one or more

numerical values that provide meaningful information about me skills

possessed by individuals who responded to the items. In the most general

sense, this paper is about the circumstances under which it is reasonable to

6
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report a single numerical value to summarize level of performance on a

test and when more than one value is needed to provide the summary. The

probabilistic modeling procedure called multidimensional item response

theory (MIRT) (Reckase, 1989) will be used as the framework for these

discussions, but in many cases the results are much more general than the

particular models used. Assumptions are made at the start that all matrices

generated by the interaction between people and test items are based on

psychological processes that have more than a single component and that

the probability of a correct response to an item increases with increases in

relevant psychological dimensions. This does not necessarily imply that

the SD of a data matrix is more than one. To support this contention, it is

now necessary to get into the theory.

Let us first begin with a very simple case. Suppose that a population

of people vary on only two skills labeled 01 and 02. On all other skills that

they possess, there are no differences. In this case, 81 and 02 are

considered as psychological constructs and not necessarily statistical

7
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constructs. Suppose further that one, dichotomously-scored, test item that

requires both of these skills for successful performance is administered

to the population. To discuss the relationship between the population and

the test item in any quantitative sense requires that a metric be defined for

the 01,02-space. One way to do this is to specify a mathematical model for

the relationship between performance on the item and the location in the

space. The model specification sets the metric of the space. The location

of the 01,92-points relative to each other are determined in such a way that

the observed data conform to the relationship specified in the model.

When dealing with only one test item, few constraints are placed on

the choice of a model. As more test items are included in the generation

of the data matrix, many models will not yield metrics for the space that

are consistent with these data. The symptom of this problem is lack of fit

of the model to the data matrix.

Whih, many MIRT models are possible (see Reckase and McKinley,

1985 for some examples), the single item in this example will be modeled

8
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using the multidimensional extension of the two-parameter logistic model

because of its mathematical tractability and simplicity. This model is

given by the equation

P(1./.1i= di,

where tuij=llai, di, 0i} is the probability of a correct response for

person i to item i,

is the score (0 or 1) for person j. on item i,

ai is a vector of discrimination parameters,

0i is a vector of person location parameters,

and di is a scalar parameter related to the difficulty of the item.

Alternatively, the metric of the 01,02space could be defined on some

oretical grounds (e.g., according to theory, the distribution of skills

should be standard bivariate normal with p = .7). In that case, the form of

the relationship between the two hypothetical constructs and performance

9
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on the test item would have to be determined empirically from the

observed responses to the test item while constraining the bivariate ability

distribution to the form that was assumed.

In the model that is used here, the height above the 01,92-plane is an

estimate of the probability that a person at a particular location in the spar,e

will get the test item correct. Another interpretation that could be used is

that the height represents the proportion of persons at that point that would

obtain a correct response. This interpretation is less defensible since if the

space is continuous the number of persons at a point in the space is zero.

If the item under discussion is given some concrete characteristics,

the surface describing the probability of a correct response to the item,

called the item response surface (IRS), can be presented graphically.

Suppose the test item has parameters a1=(1.732, 1.000) and (11=2.8. For

convenience, this test item will be labeled Item 1. The surface

representing the relationship specified by Equation 1 can be presented in

two forms. One is as a three-dimensional perspective representation as is

10
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shown in Figure 1. The second is as a two-dimensional plot of the

equiprobable contours as is shown in Figure 2.

Insert Figures 1 and 2 about here

Notice that in Figure 2 the equiprobable contour lines are all parallel,

straight lines. This feature is a result of the compensatory nature of the

model presented in Equation 1. The a1'8 term in the exponent of e can be

written as aileil + ai20j2. In this form it is clear that any change in Oil can

be compensated for by a change in ej2 resulting in the same value for the

sum. In fact, the equation

aitOi + stz0i2 ÷ = k

is the equation for the linear contour lines with the value of k determining

which line is being considered. Note that the slope of each of the

equiprobable contours for Item 1 with respect to el is -1.732.

The Dimensionality of Data from a Single Tmt Item

11
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By definition, the probability of a correct response to the test item

for persons located along the same equiprobable contour line is the same.

This implies that all persons along the same contour line can be mapped

into the same numerical score without loss of information about their

probability of successfully completing the test item. For this reason, the

responses to all dichotomously-scored, one-item tests have a SD of one.

This result is not a function of the compensatory MIRT model used to

model the IRS; the result is much more general. Even if the contour lines

are curved, or even discontinuous, a mapping still exists from the e-plane

to the 0-1 region of the number line. The result is simply a function of the

dichotomous scoring of the test item.

This does not mean that the number of PDs needed to respond to the

item is one. All test items probably require more than one PD to

determine the correct response. The richness of skills required to correctly

respond to the test item is lost in the conversion of performance on the test

item into zero or a one. That is the price paid for convenience of

12
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0/1-scoring.

The fact that the interaction of a population and a single

dichotomously- scored, test item generates data that has a SD of one does

not trivialize the question of what the one dimension is in terms of the

PDs. Note that in the contour plot shown in Figure 2, the probability of a

correct response changes more quickly as 01 increases than it does when 02

increases. Thus, the test item provides better discrimination between

people who differ on the first psychological dimension than on the serond.

Another way of showing this is with a vector from the origin of the space

with its base on the .5-contour, pointing in the direction of greatest rate of

change in probability for the IRS. Such a vector for Item 1 is shown in

Figure 3. The length of the vector is related to the steepness of the slope

of the probability surface in the direction specified. Note that the vector is

pointing more along 81 than 029 indicatiag that Item 1 is more sensitive to

differences in 01 than differences in 02. The direction of the vector tells the

13
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relative weighing of the two psychological dimensions on performance on

the test item.

Insert Figure 3 about here

The Dimensionalit of Data from a Two-item Test

A test that is composed of two test items provides a much more

interesting situation for study. Three different cases will be considered.

Case 1

Suppose that the test is composed of the test item already discussed

and a second test item (Item 2) that has equiprobable contours that are

everywhere parallel to those for Item 1. Th parameters of one such item

are a2=(1.299, .75) and d2=-1.35. The response surface plots for Item 2 are

given in Figures 4 and 5 for the perspective plot and the contour plot,

respectively.

14
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Insert Figures 4 and 5 about here

By comparing these plots with those in Figures 1 and 2, it can easily

be seen that the contour lines are parallel. This can be shown analytically

since the equation for a contour line for Item 2 is 1.29901 + .7502 -

1.35 = k. The slope of any of these contour lines with respect to 01 is

-1.299/.75 = -1.732, the same slope as for the contours of Item 1.

However, the magnitude of the probability of a correct response for a

particular person is not the same for the two items. All persons having the

same probability of a correct response to Item 1 may have a different

probability of correct response to Item 2, but if two persons had equal

probabilities of correct response to Item 1, the two persons will also have

equal probabilities of correct response to Item 2.

An expected score on the two item test can be obtained for each

person in the population by summing the probability of correct response to

15
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the two test items. This process is based on the assumption that local

independence holds. The contour surface in Figure 6 shows the equal

expected score contours for this two item test. Note that these contours are

also parallel to equiprobable contours for the two test items. This

obviously must be the case because the expected score for person I, xj, is

simply the sum of the probabilities of correct response for the two items

E(xi 10j) = P(uulal, d1, 0.1) + P(u221a2, $12, 8).

Since both the values of P(41, d1, 0j) and P(u2262, d2, 69 are constant

along a contour, the value of E(xj I0j) must also be constant along the

contour.

Insert Figure 6 about here

The fact that all of the persons on an equiprobable contour for one

item are on an equiprobable contour for the other item, and have the same
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expected score on the two item test, indicates that a simpler model than the

two dimensional MIRT model can be used to describe the item-person

interactions in this special case. One such model is to project each

01,02-point onto a line orthogonal to the equiprobable contours. A single

number, the distance along this line from an arbitrary origin, can be used

to obtain the probability of correct response to each item and the estimated

number-correct score on the two-item test. Actually, any line that

intersects the equiprobable contours could be used, but the orthogonal line

is more convenient mathematically. Since the performance of all of the

persons on the same equiprobable contour can be modeled using a single

numerical value without loss of precision, the data generated by the

interaction with these two test items has a SD of one. Of course, that fact

does not mean that only one psychological trait was required to

successfully respond to the test items. In this case the example was

developed based on the premise that two psychological dimensions were

required.

17
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Figure 7 shows the vectors for both Item 1 and 2. Note that they fall

along the same straight line, This indicates that both test items are

sensitive to differences in the two psychological dimensions in the same

way. Because the vectors provide a more concise summary of the

probability surfaces, they are often more useful for describing the

characteristics of a set of test items than the perspective or contour plots.

=11.01

Insert Figure 7 about here

Case 2

Suppose that the second test item does not have contour lines that are

parallel to those from Item 1. This situation is shown in Figures 8 by the

contour plot for a third test item. The test item shown in this figure,

henceforth called Item 3, has item parameters a3=(.166, 1.893) and LI3=.789.

Note that persons on the same contour line for Item will have quite

different probabilities of a correct response for Item 3. The expected

18



Multidimensional Tests

17

scores for the two-item test constructed from Items 1 and 3 are shown by

the contour plot in Figure 9. Figure 10 shows the vector plot for the two

item test. Unlike those in Figure 7, the vectors in this plot clearly do not

fall on the same line. Note that the contours in Figure 9 are not parallel to

either those of Item 1 or Item 3. Clearly the data generated by the

interaction of the population and these two test items will have an SD

greater than one. The probability of correct response to Item 3 for persons

along an equiprobable contour for Item 1 vary substantially. Mapping all

points on an equiprobable contour into a point on a line will not yield the

simplification that was obtained in Case 1.

Insert Figures 8, 9, and 10 about here

19
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Case 3

The two cases that have been discussed up to this point have varied

two characteristics of the items in the two-item tests. In Case 1, the items

varied in difficulty, but the direction of best measurement in the space was

the same (the vectors pointed in the same direction). In Case 2, the two

items were of about the same difficulty, but performance on the different

items required quite different weightings of the skills in the psychological

space. A third possibility is that the items vary both on their difficulty and

on the weighing of the dimensions needed to solve the test items. That

case, Case 3, is shown by the two item vectors given in Figure 11.

Insert Figure 11 about here

In Figure 11, one item, Item 4, is fairly easy and is measuring

predominantly ei. That item has parameters a4 = (1.743, .153) and
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d4 = 4.375. The second item, Item 5, is fairly difficulty and is measuring

predominantly 02. The parameters for Item 5 are a5 = (.20, 1.638) and

ds = -3.960. The contour plots for the IRSs for these two items are given

in Figures 12 and 13.

Insert Figures 12 and 13 about here

The question of interest here is "What will the SD be of the matrix

of item scores generated by the interaction of a population of individuals

with this two-item test?" To answer that question, a population of

individuals must first be specified because the characteristics of the matrix

are dependent on both the characteristics of the test and the characteristics

of the examinee population. For this example, assume that the examinee

population is distributed as a standard bivariate normal with p = 0.0. It is

important for this example that the distribution be centered at (0, 0) in the

21
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0-space. If the examinee population has different location in the space, the

results can be substantially different.

The equation for the .8-contour for Item 4 is

02 = -11.39201 19.536.

All 01,02-points on this line will yield a probability of correct response of

.8 when inserted into the equation for the item response model. In Case 1,

the probability of correct response was the same on the second item when

persons were on the equiprobable contour for the first item. To determine

how much variation in probability of correct response for Item 5 occurs for

persons on the .8-equiprobable contour for Item 4, the probability of

correct response for Item 5 was computed for two points on the Item 4,

.8-contour. When 01 = -1.5, 02 is

-2.448. For this point the probability of correct response to Item 5 is

.0002. When 01 = -1.7, 02 is -.17. For this point the probability of correct

response to Item 5 is .0102. Thus, for these two points on the .8-contour

22
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for Item 4, the probability of correct response to Item 5 is virtually the

same.

It can easily be seen from inspection of the contour plots in Figures

12 and 13 that for all points on the equiprobable contours for Item 4 below

a value of 1.0 on 02 there is little variation in the probability of correct

response for Item 5. The same is true for Item 4 in the region of the space

where 01 is greater than -1. Thus, for the majority of the population of

examinees in this space, when the probability of correct response is

constant on one item, it has very low variation on the other item, and vice

versa. This implies that the same kind of mapping can be performed for

Case 3 as was performed for Case 1. Persons who are located on the same

equiprobable contour can be mapped onto a line that intersects the contours

for both Item 4 and 5. A curved line that passes through (0, 0) and is

orthogonal to the equiprobable contours will probably work well.

Figure 14 shows the estimated true score contours for the test

composed of Items 4 and 5. The same line that is used to model the item

23
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response data -will also model the estimated true score contours with little

1i.;ss of precision. Thus the data matrix generated by the interaction of the

examinee population and these two items will have SD of one, even

though the item- emphasize quite different psychological dimensions.

..1
Insert Figure 14 about here

This result is specific to the selection of a population centered at

(0, 0) in tl-; space. If a population of examinees that was centered at

(-3, 3) was administered this same two-item test, the matrix of responses

would have a SD of more than one because there would be substantial

variation in correct response to Item 5 for persons on a equiprobable

contour of Item 4.

Discussion

24
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The purpose of this paprg has been to discuss the conditions under

which tests can be said to be unirlimensional. The motivation for the paper

is in part because unidimensionality assumptions are made quite often in

the application of item response theory procedures. However, concerns

over the dimensionality of test data is much broader than IRT applications.

Many psychometric procedures implicitly assume unidimensionality even

when no explicit statement of the assumption is made.

The first part of the paper deals with the distinction between

psychological constructs and statistical variables. Typically when the

dimensionality of test data is discussed, the statistical dimensionality is

what is of concern. The discussions deal with whether a particular set of

test data meet the unidimensionality assumptions of a particular

psychometric procedure. It is critical that these discussions do not confuse

these statistical considerations with the psychological interpretations of

what the test is measuring. These are validity issues that are in many ways

independent of the dimensionality issues.
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The first part of the paper tries to make explicit that the

dimensionality of test data really refers to the number of dimensions

needed to summarize a data matrix that is the result of the interactions of a

set of test items and a group of examinees. Only under very special

conditions can the dimensionality assessed from the data matrix be said to

apply to characteristics of either the set of test items Jr the e,:oup of

examinees. Just because the data matrix can be modeled using one person

variable does not mean that the people, vary on only one dimension or that

the test is only sensitive to differences on one dimension.

The second part of the paper summarizes the circumstances under

which a set of test items will generate unidimensional data when responded

to by a population cf. individuals. Two cases are presented. In the first

case, all items are sensitive to the same combination of skills in the same

way. This is shown by the parallelism of the equiprobable contour lines

for all of the items in the mt. That such tests yield unidimensional data

when administered to a group of examinees was demonstrated empirically

26
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in Reckase, Ackerman, and Carlson (1988). The important point here is

that the test items need not be sensitive to only one psychological

dimension for the interaction with the test to yield truly unidimensional

data in the statistical sense.

The second situation in which unidimensional data are generated by

the interaction of a set of test items with a set of people, is when the

psychological dimensions are strongly confounded with the difficulty of the

test items. This case yields unidimensional data because there is little

variation in the probability of correct response on the items measuring

other dimensions when there is little variation in probability of correct

response for items measuring the first dimension. This result has been

demonstrated empirically by Davey, Ackerman, Reckase & Spray (1989).

While these two cases both yield statistically unidimensional data, the

first results in number correct scores that have the same substantive

meaning throughout the score scale and the second yields a number correct

score scale that shifts in its meaning from low performance to high

27
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performance. The first case is an example of obtaining truly

unidimensional data from a test measuring multiple psychological

constructs, while the second is a case of obtaining data that appears

unidimensional from a statistical perspective but which has a

multidimensional psychological meaning.

These results both simplify and complicate the analysis of test da"

On the one hand, the application of psychometric procedures is simplified

because the results imply that tests do not have to measure narrowly

defined, pure psychological traits for procedures that assume

unidimensionality to apply. They need only measure the same combination

of traits. On the other hand, the fact that the meaning of a score scale can

change with the level of performance greatly complicates.the interpretation

of the psychological constructs underlying a test. In both cases, two tests

can be considered truly parallel only when the unidimensional score scales

have the same orientation in the multidimensional psychological trait space.



Multidimensional Tests

27

References

Davey, T., Ackerman, T. A., Reckase, M. D., & Spay, J. A. (1989, July).

Interpreting score differences when item difficulty and discrimination

are confounded. Paper presented at the meeting of the Psychometric

Society, Los Angeles.

Embretson, S. E. (1985). Multicomponent models for test design. In S. E.

Embretson (Ed.) Tst design:_)ep,/nentsin s _gyiolo and

plychometrics. New York: Academic Press.

Goldstein, H. & Wood, R. (1989). Five decades of item response

modelling. British Journal of Mathematical and Statistical

12syclhioly, 42, 139- i67.

Hambleton, R. K. (1989). Principles and selected applications of item

response theory. In R. L. Linn (Ed.) Educational Measurement (3rd

Ed.). New York: American Council on Education and Macmillan.

2



Multidimensional Tests

28

Hu lin, C. L., Drasgow, F., & Parsons, C. K. (1983). Item response

Application to measurement. Homewood, IL:

Dow Jones-Irwin.

Linn, R. L. (1989). Educational Measurement (3rd Ed.). New York:

American Council on Education and Macmillan.

Lord, F. M. & Novick, M. R. (1968). Statistical theories of mental test

scores. Reading, MA: Addison-Wesley.

Reckase, M. D. (1989, September). The interpretation and application of

multidimensional item response theory models; and computerized

testing in the instructional environment: Final Report (Research

Report ONR 89-2). Iowa City, IA: The American College Testing

Program.

Reckase, M. D., Ackerman, T. A. & Carlson, J. E. (1988). Building a

unidimensional test using multidimensional items. Journal of

Educational Measurement 25(3), 193-204.

30



Multidimensional Tests

29

Reckase, M. D. & McKinley, R. L (1985). Some latent trait theory in a

multidimensional latent space. In D. J. Weiss (Ed.) Proceedings of

the 1982 item response m and computerized testing conference.

Minneapolis: University of Minnesota.

31

.



Multidimensional Tests

30

Figure Captions

Figure 1. Perspective plot of the item response surface for Item 1.

Figure 2. Contour plot of the item response surface for Item 1.

Figure 3. Vector plot for Item 1.

Figure Perspective plot of the item response surface for Item 2.

Figure 5. Contour plot of the item response surface for Item 2.

Egure6. Contour plot of the estimated true score surface for a test

composed of Items 1 and 2.

Figure 7. Vector plot for Items 1 and 2.

Figure 8. Contour plot of the item response surface for Item 3.

Figure 9. Contour plot of the estimated true score surface for a test

composed of Items 1 and 3.

F'i ut:e1D. Vector plot for Items 1 and 3.

Figure 11. Vector plot for Items 4 and 5.

Fig ire 12. Contour plot of the item response surface for Item 4.
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Figure 13. Contour plot of the item response surface for Item 5.

Figure 14. Contour plot of the estimated true score surface for a test

composed of Items 4 and 5.
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Figure 1: Perspective plot of the item response surface for Item 1.
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Figure 2: Contour plot of the item response surface for Item 1.
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Figure 3: Vector plot for Item 1.
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Figure 4: Perspective plot of the item response surface for Item 2.
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Figure 5: Contour plot of the item response surface for Item 2.
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Figure 6: Contour plot of the estimated true score surface for a test
composed of Items 1 and 2.
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Figure 7: Vector plot for Items 1 and 2.
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Figure 8: Contour plot of the item response surface for Item 3.
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Figure 9: Contour plot of the estimated true score surface for a
test composed of Items 1 and 3.
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Figure 10: Vector plot for Items 1 and 3.
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Figure 11: Vector plot for Items 4 and 5.
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Figure 12: Contour plot of the item response surface for Item 4.
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Figure 13: Contour plot of the item response surface for Item 5.
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Figure 14: Contour plot of the estimated true score surface for a
test composed of Items 4 and 5.
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